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Objectives Methods
We aim to develop a novel demographic history We use fully-connected feedforward neural networks (scikit-learn MLPR) that take an AFS as input and
inference method that output the expected parameter(s) for a specified demographic model.
* Provides instantaneous parameter estimation from  Training data: dadi-simulated AFS labeled with corresponding demographic model parameter values.
an 1nput allele frequency spectrum (AFS) Test data: (1) dadi-simulated AFS with added noise by scaling with 6 and Poisson-sampling from the
» [s likelihood-free expected AFS; (2) msprime-simulated AFS to incorporate linkage.
* Makes efficient use of all simulated data For hyper-parameter optimization, we implemented the hyperband algorithm with scikit-learn
* Provides uncertainty quantification successive halving random search.
+ s interoperable with existing methods For uncertainty quantification, we use MAPIE, a scikit-learn-compatible package based on the
jackknife+ method.
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